留学方案定制&院校库专业库案例库
申友
2019-05-08 11:02:28
3084次浏览
不等式是GMAT数学当中很重要的一个考点,同时也是一个易错考点,很多考生在学习不等式部分都会觉得很困难,那么接下来就主要给大家讲一下不等式这部分需要掌握的知识点以及相应例题。
首先是不等式的性质不较多,常考的不等式性质如下:
①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz。(乘法原则)
其次是要掌握穿针引线法计算未知数范围,理解口诀“自上而下,从右到左,奇穿偶不穿”。
最后是在做不等式题目的时候一定要注意未知数的范围,例如题目有没有要求未知数为整数或者正数等等。
例题1:
If a and b are positive integers, is a/b<9/11 ?
(1) a/b<0.818
(2) b/a>1.223
A Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D EACH statement ALONE is sufficient.
E Statements (1) and (2) TOGETHER are NOT sufficient
【解析】答案是D
条件1:a/b<0.818,9/11=0.81818……,0.818<9/11,根据传递性,a/b<0.818<9/11,所以是充分的。
条件2:b/a>1.223,11/9=1.22222……,1.223>11/9,根据传递性,b/a>1.223>11/9,所以也是充分的。
例题2:
Is x < 0 ?
(1) x^3 < x^2
(2) x^3 < x^4
A Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D EACH statement ALONE is sufficient.
E Statements (1) and (2) TOGETHER are NOT sufficient.
【解析】答案是C
条件1:x^3 - x^2<0,即x^2(x-1)<0,画数轴,利用穿针引线法,可得x<0或0<x<1,不充分。
条件2:x^4 - x^3>0,即x^3(x-1)>0,画数轴,利用穿针引线法,可得x<0或x>1,不充分。
结合:可以得到x<0,充分。
例题3:
The only gift certificates that a certain store sold yesterday were worth either $100 each or $10 each. If the store sold a total of 20 gift certificates yesterday,how many gift certificates worth $10 each did the store sell yesterday?
(1) The gift certificates sold by the store yesterday were worth a total of between $1,650 and$1,800.
(2) Yesterday the store sold more than 15 gift certificates worth $100 each.
A Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D EACH statement ALONE is sufficient.
E Statements (1) and (2) TOGETHER are NOT sufficient.
【解析】答案是A
假设$10 each的gift certificates数量是x,$100 each的gift certificates数量是y,并且,x和y只能取非负整数
根据题意可得x+y=20(此种根据题干可以得到的等式,在做题时一定要列出来,以免后面分析条件时漏掉)
条件1:可以得到不等式1650<10x+100y<1800,根据x+y=20可得,x=20-y,从而代入消元。即165<20-y+10y<180,化简以后得到145<9y<160
因为y必须是整数,那么满足该不等式的解就只有:y=17,x=3,所以充分。
条件2:y>15,具体数值未知,不充分。
例题4:
If x is positive, is x > 3 ?
(1) (x−1)^2 > 4
(2) (x−2)^2 > 9
A Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
CBOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
DEACH statement ALONE is sufficient.
E Statements (1) and (2) TOGETHER are NOT sufficient.
【解析】答案是D
这道题就是要注意前提条件,x是正数
条件1:解不等式得到x>3或x<-1,由于x必须是正数,所以舍掉其小于-1的范围,只能是x>3,所以充分。
条件1:解不等式得到x>5或x<-1,同理舍掉其小于-1的范围,只能是x>5,那么也符合x>3的范围的,所以也是充分的。
更多详细的GMAT备考资料请关注申友GMAT公众号【申友GMAT与商科留学】:Thinku-GMAT
GMAT 700+必备核心资料请添加小助手微信【班煮任】:ybnt110
申友GMAT六大热门提分课程欢迎咨询:400-600-1123
相关阅读
留学评估
提前规划,免费评估
让你的留学快人一步
姓名:
手机:
点击查看更多内容